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Final Exam at 13, MTH 213, Fall 2018

Ayman Badawi
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QUESTION 1. (8 points)

Use Dijkstra’s method to find the minimum spanning tree of the below graph (you may start from vertex 0).
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A salesman is located at G. He wants to visit each block (@ef) exactly once and then return to G.

1) Find all possible Hamiltonian cycle,

qLASEZE2ZD LR g WeEgit -y

8

@ igiclpze FHA LG NetghT 1Y

2) Find the Hamiltonian cycle with minimum weight, & —A— F—E — D — ( — B,__ C
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QUESTION 3. (6 p}ints) Let V' = {1,2,4,5,7,8}. Two vertices in V, say a, b, are connected by an edge if and only if
a+ b= 3cforsomee s N°)
a) Draw such grzr\ph.
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b) Is the graph a complete bipartite graph? if it is a K, ,,,. then find n and m.

Upn, B Juph fs o complete Boade graph  n=m= 3.

¢) Find the diameter of the graph.
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d) Is the graph an Eulerian? If yes. then find such Eulerian circuit.
NO, Uhe gmph ts not Zuletfan. ( degq () = 3)

e} Is the graph Hamiltonian? If yes, then find such Hamiltonian cycle.
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QUESTION 4, (4 points) Is the sequence 5,3(2/2, 2’:@(1: graphical (i.e., is there a graph so that the vertices have the

given degrees)? If yes draw such graph. I~
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QUESTION 5. (6 points)) Consider the following co
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(i} Find the exact number of addition, subtraction, multiplication that the code executed.

# of 400y gufley Leep Efemmid :‘nB-{-B l

wﬁ k=72 K=nZts

\
U\M}ﬂq‘p 4t oftome) ermly(up fetand T H of ttmed Unywyipsp execided .
ws @ N4¥q =

-» -’ﬂu -
* ottt (W) 4 o oprgheons 4 (0%413) :

# co CY N
ot 0P T Lang Suisv Loop - S(W43) = sn341y

\ e g
KO- erodtin s (W auyn259) n
ber of op = _______‘_i_ziﬂ\ii-_?.) N )_na._HJ.__

*(ii} Find the complexity of the code.
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QUESTION 6. (4 points) A = {4,6,7,8,9, 11,13} and let B =(P(A))(i.e., B is the power set of A).
(a)Find | B.
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(b} Define " = " on B such that Va, b E(gg a” = b if and only {E Ma # @.]By example, convince me that ” = " is

not transitive and hence ” = " is not an equivalence relation on B.
—
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cNa=g « a'='c
(cyLet F'= {c e B||C| = 3}. Find |F| (note that |c| means the cardinality of c) .

7C3 =3y
(/

QUESTION 7. Let A = {1,2.3,...,9,10}. Define ” < * on A such that mﬁlj "a < b if and only if(a = bcfor

some ¢ € 4 >Then™ < " is a partial order relation on 4 (Do not show that).
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(i) (3 peints) By staring at the Hassee diagram, if possible, find
a. 9v6 = 3 LS

b. 1045 = (0
c. Tvy = \ /

d 572 = |Q / /
.IsthereaceAsuchthatreIfyes,ﬁndc w. c=I

f. Is there an m € A such that m < a for everya € A?Ifyes,findm g L/

(1]

QUESTION 8. (4 points) Convince me that |(0, 0o} = |9, 12]| ( you need to use the concept of bijective function ).
£: (0, 00) — (9.12) BY stareng, we can obseyire -Hre-l .
' T a5 : h s berecAtve . <& [(o,cD)l-_—_ (G2
=38 +9 | ot S

Also, \need -thes vesult =
Assume |(Al=oe , B ts cownlimble (/
en ' |AVBI= | A

L%i- A= 1(a.a2)] . B= 59,125 .
A UOIACHES BRI N I WC HESY
Sene cardenaltty s wrascitie 1C9, pa[= | (900)]




T

SEN LI | S |

QUESTION 9. (4 points
(i) How many 6-digit @ ntege@ greater than 500002 can be formed using the digits {2,@, 4,86, @
such that the afthdreitmust be an odd integer. IXNF¥I X F¥IX
I=Ele @@ > SDODOL |+ 3xwxFxaxIA
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(ii) There are'649 balls and there <10 holesvery deep holes). The holes are labeled A, A,?‘\, A_Z,A B.B.B.C.C.
(307 balls must be placed in A-holes (i-e., maybe all of them in one A-hole, or in two A-holes or in three A-holes or
imfour A-holes or in five A-holes). s must be placed in B-holes (see my earlier comment), and the remaining
balls must be placed in C-Holes (again, see my earlier comment). Then there are at least n balls that are placed in

the same hole (such hole could be an A-hole, or a B-hole, or a C-hole). What is the maximum value of n?
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QUESTION 10. (4 points) r 3_{ { ‘ [ o) = O A //

Given § = {1,2,3,4,5 6,7,8}. Let f be a bijective function from S onto 5 such that
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(i) Find f* . -P'—_— |2 2 4 3¢ Zlcg)
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(ii) Find the least positive integer n such that f* = I, where I is the identity map (i.e., I(a) = a foreverya € 5)

(lywow) (206:283,5)
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QUESTION 11. (6 points) Let A = {<5)-4,(3)-3. -1, 1,23, 4,@.@ 7@} Define "=" on A such that ¥a,b € A,
a” ="bif and only if a (mad 3} = b {mod 3). Thén "="is an equivalence relation. Do not show that.

(i) Find all equivalence classes of A,
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(ii) view "="as a subset of A x A. How many elements doeg "=" have?
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QUESTION 12. (5 points) Let m = ged(28, 128). Then find a, b such that m = 28a + 1284
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QUESTION 13. (6 points) Use math induction and convince me that 14 | (316™+3) _ 13) for every m > 1.

G) Prove r =]
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QUESTION 14. (6 points) Let X be number of students in MTH 221. Given 0 < X < 63 such that X (mod 7) = 2
and 3.X (mod 9} = 6. Use the Chinese remainder Theorem (CRT) and find all possnblc values of X.

(ot =3 ) = 7yermts)
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X= (M Ct + Mot Co) (mod )
= (@DUWR - (DENY) (mod &3)

QUESTION 15, (3 pmnts)

(1) Find all possible solution of 8z = 12 over PLANET Zy @
\ how-2 d'(-( b ﬁ/ e
GACB=2)=H IS ulir? der . " { 7L et

To fencd Y. g and ewor. @A =12 th T, (A=
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(2) Find all possible solution of 8z (mod 20) = 12 over PLANET Z
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