Final Exam at 13, MTH 213, Fall 2018

Ayman Badawi

QUESTION 1. (8 points)

Use Dijkstra's method to find the minimum spanning tree of the below graph (you may start from vertex 0).

E-pro () of the may office of the control of the co										
	vertex	0		2	3	14	5	6	17	8
***	0	0	40	00	∞	∞	∞	00	8°	00
	1		49	121	∞	00	00	∞	ලං	∞
_	7			121	8	∞	∞	97	80	157
_	6			121	00	∞	116	97		15-7
_	5			121	≥5⁵	기5	[1]6]			157
	2			12	192	5/2				14.2
	8				192	2/5				[142]
,	3				192	2 7				
	4					217				

QUESTION 2. (5 points)

A salesman is located at G. He wants to visit each block (each vertex) exactly once and then return to G. 1) Find all possible Hamiltonian cycle.

GLA4F2E2P1C2B3G

G3B2C1D3E2F4ALG Werght: 14

2) Find the Hamiltonian cycle with minimum weight.

G-A-F-E-D-C-B-G

QUESTION 3. (6 points) Let $V = \{1, 2, 4, 5, 7, 8\}$. Two vertices in V, say a, b, are connected by an edge if and only if a + b = 3c for some $c \in N^*$.

a) Draw such graph.

b) Is the graph a complete bipartite graph? if it is a $K_{n,m}$, then find n and m.

c) Find the diameter of the graph.

d) Is the graph an Eulerian? If yes, then find such Eulerian circuit.

e) Is the graph Hamiltonian? If yes, then find such Hamiltonian cycle.

QUESTION 4. (4 points) Is the sequence 3,3(2,2,1) T graphical (i.e., is there a graph so that the vertices have the given degrees)? If yes draw such graph.

- (i) J.B. 2020 D. 1
- (41) 0,0,0,0
- (1) 2,1,1,1,0,1
- 4 yes, there is a
- (1ii) D, OD1, 1,0
- graph with the
- (v) (v) (vi)
- geven degrees = 5,3,2,2,2,1,1

QUESTION 5. (6 points)) Consider the following code

For i = 2 to (k+9) \longrightarrow k+9-2+1 = k+8

 $L = i^2 + 7 * i + 2 \longrightarrow \bigoplus$ next i

next k

> enner

(i) Find the exact number of addition, subtraction, multiplication that the code executed

# 04	terrer order loop execut	$pad : [n^3 + 3]$
owerloop K=	K=3	K=h3+5
enneyloup y=	# of termen ennertup executal # of - perations: (44)	13+5+8 = (13+13)
井。	Detalence mile ?	# of operations = 4(n3+13) = 4n3+52

 $(n^3+3) =$

in exact number of operations = $(44+4n^3+52)(n^3+3) + (5n^3+15)$

(ii) Find the complexity of the code.

QUESTION 6. (4 points) $A = \{4, 6, 7, 8, 9, 11, 13\}$ and let B = (P(A)) (i.e., B is the power set of A).

(b) Define " = " on B such that $\forall a, b \in B$; a" = "b if and only if $b \cap a \neq \emptyset$. By example, convince me that " = " is not transitive and hence " = " is not an equivalence relation on B.

$$C \cap Q = \emptyset \quad A = C$$

b
$$\cap$$
 $Q = \emptyset$ if $Q'' = 0''$ However, b \cap $Q = \emptyset$ Hence $Q'' \neq 0''$ \cap $Q'' = 0''$ \cap $Q'' = 0''$ \cap $Q'' = 0''$ for Q'

QUESTION 7. Let $A = \{1, 2, 3, ..., 9, 10\}$. Define " \leq " on A such that $\forall a, b \in A$ " $a \leq b$ " if and only if a = bc for some $c \in A$ Then " \leq " is a partial order relation on A (Do not show that).

(i) (4 points) Draw the Hassee diagram of such relation

(ii) (3 points) By staring at the Hassee diagram, if possible, find

- b. $10 \land 5 = \{0\}$
- c. $7 \lor 5 = 1$
- e. Is there a $c \in A$ such that $a \le c$ for every $a \in A$? If yes, find c
- f. Is there an $m \in A$ such that $m \le a$ for every $a \in A$? If yes, find $m \in A$

QUESTION 8. (4 points) Convince me that $|(0,\infty)| = |[9,12]|$ (you need to use the concept of bijective function).

Also, I need -thes result =

ASSUME IA = 00, B +s countable

Then: |AUB|= |A|

" | (9/12) V 19/123 |= | [9/12] |= | (9/12)

Sence cardinality is transitive, |[9,12] = | (0,00)

QUESTION 9. (4 points)

Annihart Lo.

(i) How many 6-digit even integers STRICTLY greater than 500002 can be formed using the digits $\{2, \emptyset, 4, \emptyset, 6, \emptyset\}$ such that the fifth digit must be an odd integer.

(ii) There are 649 balls and there are 10 holes (very deep holes). The holes are labeled A. A. A. A. A. B. B. B. C. C. 507 balls must be placed in A-holes (i.e., maybe all of them in one A-hole, or in two A-holes or in three A-holes or in four A-holes or in five A-holes), 33 balls must be placed in B-holes (see my earlier comment), and the remaining balls must be placed in C-Holes (again, see my earlier comment). Then there are at least n balls that are placed in the same hole (such hole could be an A-hole, or a B-hole, or a C-hole). What is the maximum value of n?

$$\lceil \frac{507}{5} \rceil = 102 \lceil \frac{109}{2} \rceil = 57$$
 $n = \max(102, 11, 55)$ $\lceil \frac{33}{3} \rceil = 11$

QUESTION 10. (4 points)

Given $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Let f be a bijective function from S onto S such that

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 1 & 2 & 8 & 4 & 3 \end{pmatrix}$$
(i) Find f^2 .
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 2 & 7 & 6 & 7 & 8 \end{pmatrix}$$

$$4 & 8 & 2 & 7 & 6 & 3 & 5 \end{pmatrix}$$

(ii) Find the least positive integer n such that $f^n = I$, where I is the identity map (i.e., I(a) = a for every $a \in S$)

$$(1,7,4) (2,6,8,3,5)$$

$$= 1. \text{ the least postfere}$$

$$1. (6 points) \text{ Let } A = \{-5,-4,-3,-2,-1,1,2,3,4,3,6,7,8\}. \text{ Define "-" on A such that We had.}$$

QUESTION 11. (6 points) Let $A = \{-5\}, -4, \{3\}, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8\}$. Define "=" on A such that $\forall a, b \in A$, a" = "b if and only if $a \pmod{3} = b \pmod{3}$. Then "=" is an equivalence relation. Do not show that.

(i) Find all equivalence classes of A.

$$[-5] = \{-5, -2, 1, 4, 7\}$$

$$[-4] = \{-4, 1, 2, 5, 8\}$$

$$[-3] = \{-3, 3, 6\}$$

(ii) view "=" as a subset of
$$A \times A$$
. How many elements does "=" have?

QUESTION 12. (5 points) Let m = gcd(28, 128). Then find a, b such that m = 28a + 128b

$$9(d(28, 128) = 4$$

$$4 = 16 - 12$$

 $4 = 16 - (28 - 16)$

QUESTION 13. (6 points) Use math induction and convince me that $14 \mid (3^{(6m+3)} - 13)$ for every $m \ge 1$.

(ii) Assume 14/(3 (6m+3) _ 13) for some m =1

$$3^{6(m+1)+3}$$
 $-13 = 3^{6m+9} -13 = 3 \cdot 3^{(6m+3)} -13$

$$= 3^{6} \cdot 3^{(6M+3)} - 13 - 3^{6} \cdot 13 + 3^{6} \cdot 13$$

$$= 3^{6} \cdot \left(3^{(6m+3)} - (3) + 3^{6} \cdot (3 - 1)\right)$$

$$\Rightarrow \frac{3^{6(m+1)+3}}{14} = \frac{3^{6} \cdot (3^{16m+3}) - 13}{14} + \frac{3^{6} \cdot 13^{-13}}{14}$$

b= -this is also by 14. Is devestble by (ii) by devestble by 14.

QUESTION 14. (6 points) Let X be number of students in MTH 221. Given 0 < X < 63 such that $X \pmod{7} = 2$ and $3X \pmod{9} = 6$. Use the Chinese remainder Theorem (CRT) and find all possible values of X. $X \pmod{7} = 2 \binom{n-7}{1}$ M=7X9=63 $3 \times (mod 9) = 6 (nz=9)$ gcd (7,0)=1, Hence, CRT & applicable To fend V: $m_2 = \frac{m}{n_2} = \frac{63}{9} = \boxed{7}$ $m = \frac{m}{n} = \frac{9}{3} = 17$ 7X=3 PN Z9 9X=1 PM 2= (=) 2X= Pn Z-1, =X1=4 X= (M1X1C1 + M2X2(2) (mod m) $=((9)(4)(2)+(7)(3)(6)) \pmod{63}$ 1. X=X, X, X, X, X, X QUESTION 15. (5 points) (1) Find all possible solution of 8x = 12 over PLANET Z_{20} gcd(8,20)=4 Is 4/12? yes. "we have 4 different solutions.

To find X1. eng and error. 8.2, = 12 en 220 (2, = 4) To find other solutions: h = 20 = 4x (5) : set of other solutions: 34,9,14,193

(2) Find all possible solution of $8x \pmod{20} = 12$ over PLANET Z

11 H+2K/ KES.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com